Decoding how a soil bacterium extracts building blocks and metabolic energy from ligninolysis provides road map for lignin valorization.
نویسندگان
چکیده
Sphingobium sp. SYK-6 is a soil bacterium boasting a well-studied ligninolytic pathway and the potential for development into a microbial chassis for lignin valorization. An improved understanding of its metabolism will help researchers in the engineering of SYK-6 for the production of value-added chemicals through lignin valorization. We used 13C-fingerprinting, 13C metabolic flux analysis (13C-MFA), and RNA-sequencing differential expression analysis to uncover the following metabolic traits: (i) SYK-6 prefers alkaline conditions, making it an efficient host for the consolidated bioprocessing of lignin, and it also lacks the ability to metabolize sugars or organic acids; (ii) the CO2 release (i.e., carbon loss) from the ligninolysis-based metabolism of SYK-6 is significantly greater than the CO2 release from the sugar-based metabolism of Escherichia coli; (iii) the vanillin catabolic pathway (which is the converging point of majority of the lignin catabolic pathways) is coupled with the tetrahydrofolate-dependent C1 pathway that is essential for the biosynthesis of serine, histidine, and methionine; (iv) catabolic end products of lignin (pyruvate and oxaloacetate) must enter the tricarboxylic acid (TCA) cycle first and then use phosphoenolpyruvate carboxykinase to initiate gluconeogenesis; and (v) 13C-MFA together with RNA-sequencing differential expression analysis establishes the vanillin catabolic pathway as the major contributor of NAD(P)H synthesis. Therefore, the vanillin catabolic pathway is essential for SYK-6 to obtain sufficient reducing equivalents for its healthy growth; cosubstrate experiments support this finding. This unique energy feature of SYK-6 is particularly interesting because most heterotrophs rely on the transhydrogenase, the TCA cycle, and the oxidative pentose phosphate pathway to obtain NADPH.
منابع مشابه
Lignin Biodegradation with Laccase-Mediator Systems
*Correspondence: Lew Paul Christopher , Center for Bioprocessing Research and Development, South Dakota School of Mines & Technology, 501 E. Saint Joseph Street, Rapid City, SD 57001, USA e-mail: [email protected] Lignin has a significant and largely unrealized potential as a source for the sustainable production of fuels and bulk high-value chemicals. It can replace fossil-based oil as...
متن کاملFungal Degradation of Lignin: Chapter 2
Of all naturally produced organic chemicals, lignin is probably the most recalcitrant. This is consistent with its biological functions, which are to give vascular plants the rigidity they need to stand upright and to protect their structural polysaccharides (cellulose and hemicelluloses) from attack by other organisms. Lignin is the most abundant aromatic compound on earth, and is second only ...
متن کاملRole of fungal peroxidases in biological ligninolysis.
The degradation of lignin by filamentous fungi is a major route for the recycling of photosynthetically fixed carbon, and the oxidative mechanisms employed have potential biotechnological applications. The lignin peroxidases (LiPs), manganese peroxidases (MnPs), and closely related enzymes of white rot basidiomycetes are likely contributors to fungal ligninolysis. Many of them cleave lignin mod...
متن کاملLignolytic-consortium omics analyses reveal novel genomes and pathways involved in lignin modification and valorization
Background Lignin is a heterogeneous polymer representing a renewable source of aromatic and phenolic bio-derived products for the chemical industry. However, the inherent structural complexity and recalcitrance of lignin makes its conversion into valuable chemicals a challenge. Natural microbial communities produce biocatalysts derived from a large number of microorganisms, including those con...
متن کاملتحلیل کارایی انرژی در مدلهای بافت شهری اقلیم گرم و خشک، نمونۀ موردی: شهر اصفهان
Among the most important factors affecting energy consumption in the building sector are social and economic conditions, the culture of energy consumption, geographical and climatic characteristics of a city, the role of a city, efficiency of energy supply and consumption systems, and physical/spatial parameters of buildings and residential fabrics. Addressing urban form through planning ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 113 40 شماره
صفحات -
تاریخ انتشار 2016